
David H. Bailey and Robert F. Lucas, Editors

Performance Tuning of
Scientific Applications

2

List of Figures

4.1 GTC weak scaling, showing minimum and maximum times, on
the (a) Franklin XT4, (b) Intrepid BG/P, and (c) Hyperion
Xeon systems. The total number of particles and grid points
are increased proportionally to the number of cores, describing
a fusion device the size of ITER at 32,768 cores. 9

4.2 Olympus code architecture (left), vertebra input CT data
(right) . 12

4.3 Olympus weak scaling, flop rates (left), run times (right), for
the Cray XT4 (Franklin), Xeon cluster (Hyperion) and IBM
BG/P (Intrepid) . 15

4.4 Left: Gravitational radiation emitted during in binary black
hole merger, as indicated by the rescaled Weyl scalar r · Ψ4.
This simulation was performed with the Cactus-Carpet infras-
tructure with nine levels of AMR tracking the inspiralling black
holes. The black holes are too small to be visible in this fig-
ure. [Image credit to Christian Reisswig at the Albert Einstein
Institute.] Right: Volume rendering of the gravitational radia-
tion during a binary black hole merger, represented by the real
part of Weyl scalar r · ψ4. [Image credit to Werner Benger at
Louisiana State University.] 18

4.5 Carpet benchmark with nine levels of mesh refinement show-
ing(a) weak scaling performance on three examined platforms
and (b) scalability relative to concurrency. For ideal scaling the
run time should be independent of the number of processors.
Carpet shows good scalability except on Hyperion. 19

4.6 CASTRO (a) Close-up of a single star in the CASTRO test
problem, shown here in red through black on the slice planes
are color contours of density. An isosurface of the velocity mag-
nitude is shown in brown, and the vectors represent the radially-
inward-pointing self-gravity. (b) Number of grids for each CAS-
TRO test problem. 21

4.7 CASTRO performance behavior with and without the gravity
solver using one (L1) and two (L2) levels of adaptivity on (a)
Franklin and (b) Hyperion. (c) Shows scalability of the various
configurations. 24

i

ii

4.8 MILC performance and scalability using (a–b) small and (c–d)
large problem configurations. 26

4.9 Results summary for the largest comparable concurrencies of
the five evaluated codes on three leading HPC platforms, show-
ing relative runtime performance normalized to fastest system.
Note that due to BG/P’s restricted memory capacity: Olym-
pus uses 4x the number of BG/P cores, Carpet uses reduced
BG/P problem domains, and CASTRO was unable to conduct
comparable BG/P experiments. 28

List of Tables

4.1 Highlights of architectures and file systems for examined plat-
forms. All bandwidths (BW) are in GB/s. “MPI BW” uses
unidirection MPI benchmarks to exercise the fabric between
nodes with 0.5MB messages. 5

4.2 Overview of scientific applications examined in our study . . 5
4.3 Scaled vertebral body mesh quantities. Number of cores used

on BG/P is four times greater than shown in this table. . . . 13

iii

iv

Contents

4 Large-Scale Numerical Simulations on High-End Computa-
tional Platforms 3
Leonid Oliker, Jonathan Carter, Vincent Beckner, John Bell, Harvey

Wasseman, Mark Adams, Stéphane Ethier, and Erik Schnetter
4.1 Introduction . 3
4.2 HPC Platforms and Evaluated Applications 4
4.3 GTC: Turbulent Transport in Magnetic Fusion 6

4.3.1 Gyrokinetic Toroidal Code 6
4.4 GTC Performance . 8
4.5 OLYMPUS: Unstructured FEM in Solid Mechanics 11

4.5.1 Prometheus: parallel algebraic multigrid linear solver . 12
4.5.2 Olympus Performance 13

4.6 Carpet: Higher-Order AMR in Relativistic Astrophysics . . . 16
4.6.1 The Cactus Software Framework 16
4.6.2 Computational Infrastructure: Mesh Refinement with

Carpet . 16
4.6.3 Carpet Benchmark . 17
4.6.4 Carpet Performance 19

4.7 CASTRO: Compressible Astrophysics 20
4.7.1 CASTRO and Carpet 22
4.7.2 CASTRO Performance 23

4.8 MILC: Quantum Chromodynamics 25
4.8.1 MILC Performance . 26

4.9 Summary and Conclusions 27
4.10 Acknowledgements . 29

Bibliography 31

v

vi

2

Chapter 4

Large-Scale Numerical Simulations on
High-End Computational Platforms

Leonid Oliker, Jonathan Carter, Vincent Beckner, John Bell, Harvey Wasseman

CRD/NERSC, Lawrence Berkeley National Laboratory

Mark Adams

APAM Department, Columbia University

Stéphane Ethier

Princeton Plasma Physics Laboratory, Princeton University

Erik Schnetter

CCT, Louisiana State University

4.1 Introduction . 3
4.2 HPC Platforms and Evaluated Applications . 4
4.3 GTC: Turbulent Transport in Magnetic Fusion . 5

4.3.1 Gyrokinetic Toroidal Code . 6
4.4 GTC Performance . 7
4.5 OLYMPUS: Unstructured FEM in Solid Mechanics . 11

4.5.1 Prometheus: parallel algebraic multigrid linear solver 12
4.5.2 Olympus Performance . 13

4.6 Carpet: Higher-Order AMR in Relativistic Astrophysics 15
4.6.1 The Cactus Software Framework . 16
4.6.2 Computational Infrastructure: Mesh Refinement with Carpet . . . 16
4.6.3 Carpet Benchmark . 17
4.6.4 Carpet Performance . 19

4.7 CASTRO: Compressible Astrophysics . 20
4.7.1 CASTRO and Carpet . 22
4.7.2 CASTRO Performance . 23

4.8 MILC: Quantum Chromodynamics . 25
4.8.1 MILC Performance . 26

4.9 Summary and Conclusions . 27
4.10 Acknowledgements . 29

4.1 Introduction

After a decade where high-end computing was dominated by the rapid
pace of improvements to CPU frequencies, the performance of next-generation

3

4 Performance Tuning of Scientific Applications

supercomputers is increasingly differentiated by varying interconnect designs
and levels of integration. Understanding the tradeoffs of these system designs
is a key step towards making effective petascale computing a reality. In this
work, we conduct an extensive performance evaluation of five key scientific
application areas: micro-turbulence fusion, quantum chromodynamics, micro-
finite-element solid mechanics, supernovae and general relativistic astrophysics
that use a variety of advanced computation methods, including adaptive mesh
refinement, lattice topologies, particle in cell, and unstructured finite elements.
Scalability results and analysis are presented on three current high-end HPC
systems, the IBM BlueGene/P at Argonne National Laboratory, the Cray XT4
and the Berkeley Laboratory’s NERSC Center, and an Intel Xeon cluster at
Lawrence Livermore National Laboratory1. In this paper, we present each code
as a section, where we describe the application, the parallelization strategies,
and the primary results on each of the three platforms. Then we follow with
a collective analysis of the codes performance and make concluding remarks.

4.2 HPC Platforms and Evaluated Applications

In this section we outline the architecture of the systems used in this
study. We have chosen three three architectures which are often deployed at
high-performance computing installations, the Cray XT, IBM BG/P, and an
Intel/Infiniband cluster. The cpu and node architectures are fully described
in Chapter ?? , Section ?? of this book, so we confine ourselves here to a
description of the interconnects. In selecting the systems to be benchmarked,
we have attempted to cover a wide range of systems having different intercon-
nects. The Cray XT is designed with tightly integrated node and interconnect
fabric. Cray have opted to design a custom network ASIC and messaging
protocol and couple this with a commodity AMD processor. In contrast, the
Intel/IB cluster is assembled from off the shelf high-perfortmance networking
components and Intel server processors. The final system, BG/P, is custom
designed for processor, node and interconnect with power efficiency as one of
the primary goals. Together these represent the most common design trade-
offs in the high performance computing arena. Table 4.1 shows the size and
topology of the three system interconnects.

Franklin: Cray XT4: Franklin, a 9660 node Cray XT4 supercomputer,
is located at Lawrence Berkeley National Laboratory (LBNL). Each XT4 node
contains a quad-core 2.3 GHz AMD Opteron processor, which is tightly inte-
grated to the XT4 interconnect via a Cray SeaStar2+ ASIC through a Hyper-
Transport 2 interface capable of capable of 6.4 GB/s. All the SeaStar routing

1The Hyperion cluster used was configured with 45-nanometer Intel Xeon processor 5400
series, which are quad-core “Harpertown nodes.”

Large-Scale Numerical Simulations on High-End Computational Platforms 5

System Processor Total MPI
Name Architecture

Interconnect
Nodes BW

Franklin Opteron Seastar2+/3D Torus 9660 1.67
Intrepid BG/P 3D Torus/Fat Tree 40960 1.27
Hyperion Xeon Infiniband 4×DDR 576 0.37

TABLE 4.1: Highlights of architectures and file systems for examined
platforms. All bandwidths (BW) are in GB/s. “MPI BW” uses unidirection
MPI benchmarks to exercise the fabric between nodes with 0.5MB messages.

chips are interconnected in a 3D torus topology with each link is capable of
7.6 GB/s peak bidirectional bandwidth, where each node has a direct link
to its six nearest neighbors. Typical MPI latencies will range from 4-8µs, de-
pending on the size of the system and the job placement.

Intrepid: IBM BG/P: Intrepid is a BG/P system located at Argonne
National Labs (ANL) with 40 racks of 1024 nodes each. Each BG/P node has 4
PowerPC 450 CPUs (0.85 GHz) and 2GB of memory. BG/P implements three
high-performance networks: a 3D torus with a peak bandwidth of 0.4 GB/s
per link (6 links per node) for point to point messaging; a collectives network
for broadcast and reductions with 0.85 GB/s per link (3 links per node); and
a network for a low-latency global barrier. Typical MPI latencies will range
from 3-10µs, depending on the size of the system and the job placement.

Hyperion: Intel Xeon Cluster: The Hyperion cluster, located at
Lawrence Livermore National Laboratory (LLNL), is composed of four scal-
able units, each consisting of 134 dual-socket nodes utilizing 2.5 GHz quad-
core Intel Harpertown processors. The nodes within a scalable unit are fully
connected via a 4× IB DDR network with an peak bidirectional bandwidth of
2.0 GB/s. The scalable units are connected together via spine switches provid-
ing full bisection bandwidth between scalable units. Typical MPI latencies will
range from 2-5µs, depending on the size of the system and the job placement.

The applications chosen as benchmarks come from diverse scientific do-
mains and employ quite different numerical algorithms and are summarized
in Table 4.2.

Code ComputationalName
Lines

Discipline
Structure

GTC 15,000 Magnetic Fusion Particle/Grid
OLYMPUS 30,000 Solid Mechanics Unstructured FE
CARPET 500,000 Relativistic Astrophysics AMR/Grid
CASTRO 300,000 Compressible Astrophysics AMR/Grid

MILC 60,000 Quantum Chromodynamics Lattice

TABLE 4.2: Overview of scientific applications examined in our study

6 Performance Tuning of Scientific Applications

4.3 GTC: Turbulent Transport in Magnetic Fusion

4.3.1 Gyrokinetic Toroidal Code

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC) code
developed to study the turbulent transport properties of tokamak fusion de-
vices from first principles [41, 42]. The current production version of GTC
scales extremely well with the number of particles on the largest systems
available. It achieves this by using multiple levels of parallelism: a 1D domain
decomposition in the toroidal dimension (long way around the torus geom-
etry), a multi-process particle distribution within each one of these toroidal
domains, and a loop-level multitasking implemented with OpenMP directives.
The 1D domain decomposition and particle distribution are implemented with
MPI using 2 different communicators: a toroidal communicator to move parti-
cles from one domain to another, and an intra-domain communicator to gather
the contribution of all the particles located in the same domain. Communica-
tion involving all the processes is kept to a minimum. In the PIC method, a
grid-based field is used to calculate the interaction between the charged par-
ticles instead of evaluating the N2 direct binary Coulomb interactions. This
field is evaluated by solving the gyrokinetic Poisson equation [40] using the
particles’ charge density accumulated on the grid. The basic steps of the PIC
method are: (i) Accumulate the charge density on the grid from the contribu-
tion of each particle to its nearest grid points. (ii) Solve the Poisson equation
to evaluate the field. (iii) Gather the value of the field at the position of the
particles. (iv) Advance the particles by one time step using the equations of
motion (“push” step). The most time-consuming steps are the charge accu-
mulation and particle “push”, which account for about 80% to 85% of the
time as long as the number of particles per cell per process is about two or
greater.

In the original GTC version described above, the local grid within a
toroidal domain is replicated on each MPI process within that domain and the
particles are randomly distributed to cover that whole domain. The grid work,
which comprises of the field solve and field smoothing, is performed redun-
dantly on each of these MPI processes in the domain. Only the particle-related
work is fully divided between the processes. This has not been an issue until
recently due to the fact that the grid work is small when using a large number
of particles per cell. However, when simulating very large fusion devices, such
as the international experiment ITER [33], a much larger grid must be used
to fully resolve the microturbulence physics, and all the replicated copies of
that grid on the processes within a toroidal domain make for a proportionally
large memory footprint. With only a small amount of memory left on the
system’s nodes, only a modest amount of particles per cell per process can
fit. This problem is particularly severe on the IBM Blue Gene system where
the amount of memory per core is small. Eventually, the grid work starts

Large-Scale Numerical Simulations on High-End Computational Platforms 7

dominating the calculation even if a very large number of processor cores is
used.

The solution to our non-scalable grid work problem was to add another
level of domain decomposition to the existing toroidal decomposition. Al-
though one might think that a fully 3D domain decomposition is the ideal
choice, the dynamics of magnetically confined charged particles in tokamaks
tells us otherwise. The particle motion is very fast in both the toroidal and
poloidal (short way around the torus) directions, but is fairly slow in the ra-
dial direction. In the toroidal direction, the domains are large enough that
only 10% of the particles on average leave their domain per time step in spite
of their high velocities. Poloidal domains would end up being much smaller,
leading to a high level of communication due to a larger percentage of particles
moving in and out of the domains at each step. Furthermore, the poloidal grid
points are not aligned with each other in the radial direction, which makes the
delineation of the domains a difficult task. The radial grid, on the other hand,
has the advantage of being regularly spaced and easy to split into several do-
mains. The slow average velocity of the particles in that direction insures that
only a small percentage of them will move in and out of the domains per time
step, which is what we observe.

One disadvantage, however, is that the radial width of the domains needs
to decrease with the radius in order to keep a uniform number of particles
in each domain since the particles are uniformly distributed across the whole
volume. This essentially means that each domain will have the same volume
but a different number of grid points. For a small grid having a large number
of radial domains, it is possible that a domain will fall between two radial
grid points. Another disadvantage is that the domains require a fairly large
number of ghost cells, from 3 to 8 on each side, depending on the maximum
velocity of the particles. This is due to the fact that our particles are not point
particles but rather charged “rings”, where the radius of the ring corresponds
to the Larmor radius of the particle in the magnetic field. We actually follow
the guiding center of that ring as it moves about the plasma, and the radius of
the ring changes according to the local value of the magnetic field. A particle
with a guiding center sitting close to the boundary of its radial domain can
have its ring extend several grid points outside of that boundary. We need to
take that into account for the charge deposition step since we pick four points
on that ring and split the charge between them [40]. As for the field solve for
the grid quantities, it is now fully parallel and implemented with the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [50].

Overall, the implementation of the radial decomposition in GTC resulted
in a dramatic increase in scalability for the grid work and decrease in the
memory footprint of each MPI process. We are now capable of carrying out
an ITER-size simulation of 130 million grid points and 13 billion particles
using 32,768 cores on the BG/P system, with as little as 512 Mbytes per
core. This would not have been possible with the old algorithm due to the
replication of the local poloidal grid (2 million points).

8 Performance Tuning of Scientific Applications

4.4 GTC Performance

Figure 4.1 shows a weak scaling study of the new version of GTC on
Franklin, Intrepid, and Hyperion. In contrast with previous scaling studies
that were carried out with the production version of GTC and where the
computational grid was kept fixed [48, 49], the new radial domain decompo-
sition in GTC allows us to perform a true weak scaling study where both
the grid resolution and the particle number are increased proportionally to
the number of processor cores. In this study, the 128-core benchmark uses
0.52 million grid points and 52 million particles while the 131,072-core case
uses 525 million grid points and 52 billion particles. This spans three orders
of magnitude in computational problem size and a range of fusion toroidal
devices from a small laboratory experiment of 0.17 m in minor radius to an
ITER-size device of 2.7 m, and to even twice that number for the 131,072-
core test parameters. A doubling of the minor radius of the torus increases its
volume by 8 if the aspect ratio is kept fixed. The Franklin Cray XT4 numbers
stop at the ITER-size case on 32,768 cores due to the number of processors
available on the system although the same number of cores can easily handle
the largest case since the amount of memory per core is much larger than on
BG/P. The concurrency on Hyperion stops at 2048, again due to the limited
number of cores on this system. It is worth mentioning that we did not use
the shared-memory OpenMP parallelism in this study although it is available
in GTC.

The results of the weak scaling study are presented as area plots of the wall
clock times for the main steps in the time-advanced loop as the number of cores
increases from 128 to 32,768 in the case of the XT4, from 128 to 131,072 for the
BG/P, and from 128 to 2048 for Hyperion. The main steps of the time loop are:
accumulating the particles’ charge density on the grid (“charge” step, memory
scatter), solving the Poisson equation on the grid (“solve” step), smoothing
the potential (“smooth” step), evaluating the electric field on the grid (“field”
step), advancing the particles by one time step (“push” phase including field
gather), and finally, moving the particles between processes (“shift”). The first
thing we notice is that the XT4 is faster than the other 2 systems for the same
number of cores. It is about 30% faster than Hyperion up to the maximum of
2048 cores available on that system. Compared to BG/P, Franklin is 4 times
faster at low core count but that gap decreases to 2.4 times faster at 32,768
cores. This clearly indicates that the new version of GTC scales better on
BG/P than Franklin, a conclusion that can be readily inferred visually from
the area plots. The scaling on BG/P is impressive and shows the good balance
between the processor speed and the network speed. Both the “charge” and
“push” steps have excellent scaling on all three systems as can be seen from
the nearly constant width of their respective areas on the plots although the
“charge” step starts to increase at large processor count. The “shift” step

Large-Scale Numerical Simulations on High-End Computational Platforms 9

0

50

100

150

200

250

128 512 2K 8K 32K

M
in
im

um
 R
un

/
m
e
(s
ec
on

ds
)

Processors

GTC: Franklin MIN Other Smooth Solve

Field ShiH Charge

Push

0

50

100

150

200

250

128 512 2K 8K 32K

M
ax
im

um
 R
un

1
m
e
(s
ec
on

ds
)

Processors

GTC: Franklin MAX Other Smooth Solve

Field ShiI Charge

Push

(a)

0

100

200

300

400

500

600

700

128 512 2K 8K 32K 128K

M
in
im

um
 R
un

2
m
e
(s
ec
on

ds
)

Processors

GTC: BG/P MIN Other Smooth Solve
Field ShiK Charge
Push

0

100

200

300

400

500

600

700

128 512 2K 8K 32K 128K

M
ax
im

um
 R
un

4
m
e
(s
ec
on

ds
)

Processors

GTC: BG/P MAX Other Smooth Solve
Field ShiM Charge
Push

(b)

0

50

100

150

200

128 512 2K

M
in
im

um
 R
un

.
m
e
(s
ec
on

ds
)

Processors

GTC: Hyperion MIN Other Smooth Solve
Field ShiH Charge
Push

0

50

100

150

200

128 512 2K

M
ax
im

um
 R
un

0
m
e
(s
ec
on

ds
)

Processors

GTC: Hyperion MAX Other Smooth Solve
Field ShiJ Charge
Push

(c)

FIGURE 4.1: GTC weak scaling, showing minimum and maximum times,
on the (a) Franklin XT4, (b) Intrepid BG/P, and (c) Hyperion Xeon systems.
The total number of particles and grid points are increased proportionally to
the number of cores, describing a fusion device the size of ITER at 32,768
cores.

also has very good scaling but the “smooth” and “field” steps account for the

10 Performance Tuning of Scientific Applications

largest degradation in the scaling at high processor counts. They also account
for the largest differences between the minimum and maximum times spent
by the MPI tasks in the main loop as can be seen by comparing the left
(minimum times) and right (maximum times) plots for each system. These
two steps hardly show up on the plots for the minimum times while they grow
steadily on the plots for the maximum times. They make up for most of the
unaccounted time on the minimum time plots, which shows up as “Other.”
This indicates a growing load imbalance as the number of processor-cores
increases. We note that the “push” “charge” and “shift” steps involve almost
exclusively particle-related work while “smooth” and “field” involve only grid-
related work.

One might conclude that heavy communication is responsible for most of
the load imbalance but we think otherwise due to the fact that grid work
seems to be the most affected. We believe that the imbalance is due to a
large disparity in the number of grid points handled by the different processes
at high core count. It is virtually impossible to have the same number of
particles and grid points on each core due to the toroidal geometry of the
computational volume and the radially decomposed domains. Since we require
a uniform density of grid points on the cross-sectional planes, this translates
to a constant arc length (and also radial length) separating adjacent grid
points, resulting in less points on the radial surfaces near the center of the
circular plane compared to the ones near the outer boundary. Furthermore,
the four-point average method used for the charge accumulation requires six
to eight radial ghost surfaces on each side of the radial zones to accommodate
particles with large Larmor radii. For large device sizes, this leads to large
differences in the total number of grid points that the processes near the outer
boundary have to handle compared to the processes near the center. Since the
particle work accounts for 80%–90% of the computational work, as shown by
the sum of the “push” “charge” and “shift” steps in the area plots, it is more
important to have the same number of particles in each radial domain rather
than the same number of grid points. The domain decomposition in its current
implementation thus targets a constant average number of particles during the
simulation rather than a constant number of grid points since both cannot be
achieved simultaneously. It should be said, however, that this decomposition
has allowed GTC to simulate dramatically larger fusion devices on BG/P and
that the scaling still remains impressive.

The most communication intensive routine in GTC is the “shift” step,
which moves the particles between the processes according to their new loca-
tions after the time advance step. By looking at the plots of wall clock times
for the three systems we immediately see that BG/P has the smallest ratio of
time spent in “shift” compared to the total loop time. This translates to the
best compute to communication ratio, which is to be expected since BG/P
has the slowest processor of the three systems. Hyperion, on the other hand,
delivered the highest ratio of time spent in “shift”, indicating a network perfor-
mance not as well balanced to its processor speed than the other two systems.

Large-Scale Numerical Simulations on High-End Computational Platforms 11

In terms of raw communication performance, the time spent in “shift” on the
XT4 is about half of that on the BG/P at low core count. At high processor
count, the times are about the same. It is worth noting that on 131,072 cores
on BG/P, process placement was used to optimize the communications while
this was not yet attempted on Franklin at 32,768 cores.

4.5 OLYMPUS: Unstructured FEM in Solid Mechanics

Olympus is a finite element solid mechanics application that is used for,
among other applications, micro-FE bone analysis [10, 18, 43]. Olympus is a
general purpose, parallel, unstructured, finite element program and is used to
simulate bone mechanics via micro-FE methods. These methods generate fi-
nite element meshes from micro-CT data that are composed of voxel elements
and accommodate the complex micro architecture of bone in much the same
way as pixels are used in a digital image. Olympus is composed of a paral-
lelizing finite element module Athena. Athena uses a parallel graph partitioner
(ParMetis [34]) to construct a sub-problem on each processor for a serial finite
element code FEAP [30]. Olympus uses a parallel finite element object pFEAP,
which is a thin parallelizing layer for FEAP, that primarily maps vector and
matrix quantities between the local FEAP grid and the global Olympus grid.
Olympus uses the parallel algebraic multigrid linear solver Prometheus, which
is built on the parallel numerical library PETSc [17]. Olympus controls the so-
lution process including an inexact Newton solver and manages the database
output (SILO from LLNL) to be read by a visualization application (eg, VISIT
from LLNL). Figure 4.2 shows a schematic representation of this system.

The finite element input file is read, in parallel, by Athena which uses
ParMetis to partition the finite element graph. Athena generates a complete
finite element problem on each processor from this partitioning. The processor
sub-problems are designed so that each processor computes all rows of the
stiffness matrix and entries of the residual vector associated with vertices
that have been partitioned to the processors. This eliminates the need for
communication in the finite element operator evaluation at the expense of
a small amount of redundant computational work. Given this sub-problem
and a small global text file with the material properties, FEAP runs on each
processor much as it would in serial mode; in fact FEAP itself has no parallel
constructs but only interfaces with Olympus through the pFEAP layer.

Explicit message passing (MPI) is used for performance and portability
and all parts of the algorithm have been parallelized for scalability. Hierar-
chical platforms, such as multi and many core architectures, are the intended
target for this project. Faster communication within a node is implicitly ex-
ploited by first partitioning the problem onto the nodes, and then recursively
calling Athena to construct the subdomain problem for each core. This ap-

12 Performance Tuning of Scientific Applications

(a) (b)

FIGURE 4.2: Olympus code architecture (left), vertebra input CT data
(right)

proach implicitly takes advantage of any increase in communication perfor-
mance within the node, though the numerical kernels (in PETSc) are pure
MPI, and provides for good data locality.

4.5.1 Prometheus: parallel algebraic multigrid linear solver

The largest portion of the simulation time for these micro-FE bone prob-
lems is spent in the unstructured algebraic multigrid linear solver Prometheus.
Prometheus is equipped with three multigrid algorithms, has both additive
and (true) parallel multiplicative smoother preconditioners (general block and
nodal block versions) [9], and several smoothers for the additive precondition-
ers (Chebyshev polynomials are used in this study [11]).

Prometheus has been optimized for ultra-scalability, including two impor-
tant features for complex problems using many processors [10]: (1) Prometheus
repartitions the coarse grids to maintain load balance and (2) the number of
active processors, on the coarsest grids, is reduced to keep a minimum of a
few hundred equations per processor. Reducing the number of active proces-
sors on coarse grids is all but necessary for complex problems when using
tens or hundreds of thousands of cores, and is even useful on a few hundred
cores. Repartitioning the coarse grids is important for highly heterogeneous
topologies because of severe load imbalances that can result from different
coarsening rates in different domains of the problem. Repartitioning is also
important on the coarsest grids when the number of processors are reduced

Large-Scale Numerical Simulations on High-End Computational Platforms 13

because, in general, the processor domains become fragmented which results
in large amounts of communication in the solver.

4.5.2 Olympus Performance

This section investigates the performance of our project with geometrically
nonlinear micro-FE bone analyses. The runtime cost of our analyses can be
segregated into five primary sections: (i) Athena parallel FE mesh partitioner;
(ii) linear solver mesh setup (construction of the coarse grids); (iii) FEAP
element residual, tangent, and stress calculations; (iv) solver matrix setup
(coarse grid operator construction); and finally (v) the solve for the solution.

This study uses a preconditioned conjugate gradient solver—preconditioned
with one multigrid V-cycle. The smoothed aggregation multigrid method is
used with a second order Chebyshev smoother [11]. Four meshes of this verte-
bral body are analyzed with discretization scales (h) ranging from 150 microns
to 30 microns. Pertinent mesh quantities are shown in Table 4.3. The bone tis-
sue is modeled as a finite deformation (neo-Hookean) isotropic elastic material
with a Poisson’s ratio of 0.3. All elements are geometrically identical trilinear
hexahedra (eight-node bricks). The models are analyzed with displacement
control and one solve (i.e., just the first step of the Newton solver). A scaled

h (µm) 150 120 40 30
degrees of freedom (106) 7.4 13.5 237 537

of elements (106) 1.08 2.12 57 135
of compute cores used 48 184 1696 3840

of solver iterations (Franklin) 27 38 26 23

TABLE 4.3: Scaled vertebral body mesh quantities. Number of cores used
on BG/P is four times greater than shown in this table.

speedup study is conducted on each architecture with the number of cores
listed in Table 4.3. Note, the iteration counts vary by as much as 10% in this
data due to the non-deterministic nature of the solver, and the fact that the
physical domain of each test case is not exactly the same due to noise in the
CT data and inexact meshing. In particular, the second test problem (120
µm) always requires a few more iterations to converge.

This weak scaling study is designed to keep approximately the same av-
erage number of equations per node/core. Note, a source of growth in the
solution time on larger problems is an increase in the number of flops per
iteration per fine grid node. This is due to an increase in the average num-
ber non-zeros per row which in turn is due to the large ratio of volume to
surface area in the vertebral body problems. These vertebral bodies have a
large amount of surface area and, thus, the low resolution mesh (150 µm)
has a large ratio of surface nodes to interior nodes. As the mesh is refined

14 Performance Tuning of Scientific Applications

the ratio of interior nodes to surface nodes increases, resulting in, on aver-
age, more non-zeros per row—from 50 on the smallest version to 68 on the
largest. Additionally, the complexity of the construction of the coarse grids in
smoothed aggregation has the tendency to increase in fully 3D problems. As
this problem is refined, the meshes become more fully 3D in nature—resulting
in grids with more non-zeros per row and higher complexities—this would not
be noticeable with a fully 3D problem like a cube. Thus, the flop rates are a
better guide as to the scalability of the code and scalability of each machine.

Figure 4.3(a) shows the total flop rate of the solve phase and the matrix
setup phase (the two parts of the algorithm that are not amortized in a full
Newton nonlinear solve) on the Cray XT4 Franklin at NERSC. This shows
very good parallel efficiency from 48 to just under 4K cores and much higher
flop rates for the matrix setup. The matrix setup uses small dense matrix
matrix multiplies (BLAS3) in its kernel which generally run faster than the
dense matrix vector multiplies (BLAS2) in the kernel of the solve phase. Figure
4.3(b) shows the times for the major components of a run with one linear solver
on the Cray XT4. This data shows, as expected, good scalability (ie, constant
times as problem size and processor counts are scaled up).

Figure 4.3(c) shows the flop rates for the solve phase and the matrix setup
phase on the Xeon cluster Hyperion at LLNL. Again, we see much higher flop
rates for the matrix setup phase and the solve phase is scaling very well up
to about 4K processors, but we do observe some degradation the performance
of the matrix setup on larger processor counts. This is due to the somewhat
complex communication patterns required for the matrix setup as the fine
grid matrix (source) and the course grid matrix (product) are partitioned
separately and load balancing becomes more challenging because the work
per processor is not strictly proportional to the number of vertices on that
processor. Figure 4.3(d) shows the times for the major components of one
linear solver on Hyperion. This data shows that matrix setup phase is running
fast relative to the solve phase (relatively faster than on the Cray) and the
AMG setup phase is slowing down on the larger processor counts. Overall the
Hyperion data shows that communication fabric is not as good as the Cray’s
given that tasks with complex communication requirements are not scaling as
well on Hyperion as on the XT4.

Figure 4.3(e) shows the flop rates for the solve phase and the matrix setup
phase on the IBM BG/P Intrepid at ANL. Figure 4.3(f) shows run times for
the solve phase and the matrix setup phase on the BG/P. Note, the scaling
study on the BG/P uses four times as many cores as the other two tests, due to
lack of memory. Additionally, we were not able to run the largest test case due
to lack of memory. These are preliminary results in that we have not addressed
some serious performance problems that we are observing on the IBM. First
we have observed fairly large load imbalance of about 30%. This imbalance is
partially due to the larger amount of parallelism demanded by the BG/P (i.e.,
we have four times as many MPI processes as on the other systems). We do
observe good efficiency in the solve phase but we see significant growth in the

Large-Scale Numerical Simulations on High-End Computational Platforms 15

0.0

0.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000 5000

M
Fl
op

/s
ec

Processors

Olympus Franklin Scaling Matrix setup flops
Matrix setup ideal
Solve setup flop
Solve setup ideal

(a)

0

10

20

30

40

50

60

48 184 1696 3840

Ru
n.

m
e
(s
ec
on

ds
)

Processors

Olympus: Franklin
Solve Matrix Setup AMG Setup

(b)

0.0

0.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000 5000

M
Fl
op

/s
ec

Processors

Olympus Hyperion Scaling Matrix setup flops

Matrix setup ideal

Solve setup flop

Solve setup ideal

(c)

0

10

20

30

40

50

60

48 184 1696 3840

Ru
n.

m
e
(s
ec
on

ds
)

Processors

Olympus: Hyperion

Solve Matrix Setup AMG Setup

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1000 2000 3000 4000 5000 6000 7000

M
Fl
op

/s
ec

Processors

Olympus BG/P Scaling Matrix setup flops
Matrix setup ideal
Solve setup flop
Solve setup ideal

(e)

0

10

20

30

40

50

60

192 660 6080

Ru
n.

m
e
(s
ec
on

ds
)

Processors

Olympus: BG/P

Solve Matrix Setup

(f)

FIGURE 4.3: Olympus weak scaling, flop rates (left), run times (right), for
the Cray XT4 (Franklin), Xeon cluster (Hyperion) and IBM BG/P (Intrepid)

matrix setup phase. We speculate that this is due to load imbalance issues.
Thus, we are seeing good scalability in the actual solve phase of the solver
but we are having problems with load balance and performance on the setup
phases of the code. This will be the subject of future investigation.

16 Performance Tuning of Scientific Applications

4.6 Carpet: Higher-Order AMR in Relativistic Astro-
physics

4.6.1 The Cactus Software Framework

Cactus [24, 31] is an open-source, modular, and portable programming
environment for collaborative HPC computing. It was designed and writ-
ten specifically to enable scientists and engineers to develop and perform
the large-scale simulations needed for modern scientific discovery across a
broad range of disciplines. Cactus is used by a wide and growing range
of applications, prominently including relativistic astrophysics, but also in-
cluding quantum gravity, chemical engineering, lattice Boltzmann Methods,
econometrics, computational fluid dynamics, and coastal and climate model-
ing [16, 25, 29, 35, 36, 44, 51, 57]. The influence and success of Cactus in high
performance computing was recognized with the IEEE Sidney Fernbach prize,
which was awarded to Edward Seidel at Supercomputing 2006.

Among the needs of the Cactus user community have been ease of use,
portability, support of large and geographically diverse collaborations, and
the ability to handle enormous computing resources, visualization, file I/O,
and data management. Cactus must also support the inclusion of legacy code,
as well as a range of programming languages. Some of the key strengths of
Cactus have been its portability and high performance, which led to it being
chosen by Intel to be one of the first scientific applications deployed on the
IA64 platform, and Cactus’s widespread use for benchmarking computational
architectures. For example, a Cactus application was recently benchmarked on
the IBM BlueGene/P system at ANL and scaled well up to 131,072 processors.

Cactus is a so-called “tightly coupled” framework; Cactus applications are
single executables that are intented to execute within one supercomputing sys-
tem. Cactus components (called thorns) delegate their memory management,
parallelism, and I/O to a specialized driver component. This architecture en-
ables highly efficient component coupling with virtually no overhead.

The framework itself (called flesh) does not implement any significant
functionality on its own. It rather offers a set of well-designed APIs which
are implemented by other components. The specific set of components which
are used to implement these can be decided at run time. For example, these
APIs provide coordinate systems, generic interpolation, reduction operations,
hyperslabbing, and various I/O methods, and more.

4.6.2 Computational Infrastructure: Mesh Refinement with
Carpet

Carpet [6,55] is an adaptive mesh refinement (AMR) driver for the Cactus
framework. Carpet is a driver for Cactus, providing adaptive mesh refinement,

Large-Scale Numerical Simulations on High-End Computational Platforms 17

memory management for grid functions, efficient parallelization, and I/O. Car-
pet provides spatial discretization based on highly efficient block-structured,
logically Cartesian grids. It employs a spatial domain decomposition using
a hybrid MPI/OpenMP parallelism. Time integration is performed via the
recursive Berger–Oliger AMR scheme [21], including subcycling in time. In
addition to mesh refinement, Carpet supports multi-patch systems [28,54,62]
where the domain is covered by multiple, possibly overlapping, distorted, but
logically Cartesian grid blocks.

Cactus parallelizes its data structures on distributed memory architectures
via spatial domain decomposition, with ghost zones added to each MPI pro-
cess’ part of the grid hierarchy. Synchronization is performed automatically,
based on declarations for each routine specifying variables it modifies, instead
of via explicit calls to communication routines.

Higher order methods require a substantial amount of ghost zones (in
our case, three ghost zones for fourth order accurate, upwinding differencing
stencils), leading to a significant memory overhead for each MPI process. This
can be counteracted by using OpenMP within a multi-core node, which is
especially attractive on modern systems with eight or more cores per node; all
performance critical parts of Cactus support OpenMP. However, non-uniform
memory access (NUMA) systems require care in laying out data structures in
memory to achieve good OpenMP performance, and we are therefore using a
combination of MPI processes and OpenMP threads on such systems.

We have recently used Kranc [3, 32, 39] to generate a new Einstein solver
McLachlan [23,45]. Kranc is a Mathematica-based code generation system that
starts from continuum equations in Mathematica notation, and automatically
generates full Cactus thorns after discretizing the equations. This approach
shows a large potential, not only for reducing errors in complex systems of
equations, but also for reducing the time to implement new discretization
methods such as higher-order finite differencing or curvilinear coordinate sys-
tems. It furthermore enables automatic code optimizations at a very high
level, using domain-specific knowledge about the system of equations and the
discretization method that is not available to the compiler, such as cache or
memory hierarchy optimizations or multi-core parallelization. Such optimiza-
tions are planned for the future.

Section 4.7 below describes CASTRO, an AMR infrastructure using a sim-
ilar algorithm. We also briefly compare both infrastructures there.

4.6.3 Carpet Benchmark

The Cactus–Carpet benchmark solves the Einstein equations, i.e., the field
equations of General Relativity, which describe gravity near compact objects
such as neutron stars or black holes. Far away from compact objects, the Ein-
stein equations describe gravitational waves, which are expected to be detected
by ground-based and space-based detectors such as LIGO [4], GEO600 [2], and

18 Performance Tuning of Scientific Applications

FIGURE 4.4: Left: Gravitational radiation emitted during in binary black
hole merger, as indicated by the rescaled Weyl scalar r · Ψ4. This simulation
was performed with the Cactus-Carpet infrastructure with nine levels of AMR
tracking the inspiralling black holes. The black holes are too small to be visible
in this figure. [Image credit to Christian Reisswig at the Albert Einstein Insti-
tute.] Right: Volume rendering of the gravitational radiation during a binary
black hole merger, represented by the real part of Weyl scalar r · ψ4. [Image
credit to Werner Benger at Louisiana State University.]

LISA [5] in the coming years. This detection will have groundbreaking effects
on our understanding, and open a new window onto the universe [59].

We use the BSSN formulation of the Einstein equations as described e.g. in
[12,13], which is a set of 25 coupled second-order non-linear partial differential
equations. In this benchmark, these equations are discretized using higher
order finite differences on a block-structured mesh refinement grid hierarchy.
Time integration uses Runge–Kutta type explicit methods. We further assume
that there is no matter or electromagnetic radiation present, and use radiative
(absorbing) outer boundary conditions. We choose Minkowski (flat spacetime)
initial conditions, which has no effect on the run time of the simulations.
We use fourth order accurate spatial differencing, Berger–Oliger style mesh
refinement [21] with subcycling in time, with higher order order Lagrangian
interpolation on the mesh refinement boundaries. We pre-define a fixed mesh
refinement hierarchy with nine levels, each containing the same number of
grid points. This is a weak scaling benchmark where the number of grid points
increases with the used number of cores. Figure 4.4 shows gravitational waves
from simulated binary black hole systems.

The salient features of this benchmark are thus: Explicit time inte-
gration, finite differencing with mesh refinement, many variables (about 1
GByte/core), complex calculations for each grid point (about 5000 flops). This
benchmark does not use any libraries in its kernel loop such as e.g. BLAS, LA-

Large-Scale Numerical Simulations on High-End Computational Platforms 19

0

50

100

150

200

250

300

64 256 1K 4K 8K

Ru
n.

m
e
(s
ec
on

ds
)

Processors

CARPET

Franklin

BG/P

Hyperion

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000

Sc
al
ab

ili
ty

Processors

CARPET Scaling

Linear
Franklin
BG/P
Hyperion

(b)

FIGURE 4.5: Carpet benchmark with nine levels of mesh refinement show-
ing(a) weak scaling performance on three examined platforms and (b) scala-
bility relative to concurrency. For ideal scaling the run time should be inde-
pendent of the number of processors. Carpet shows good scalability except on
Hyperion.

PACK, or PETSc, since no efficient high-level libraries exist for stencil-based
codes. However, we use automatic code generation [3, 32, 37, 39] which allows
some code optimizations and tuning at build time [15].

Our benchmark implementation uses the Cactus software framework
[24, 31], the Carpet adaptive mesh refinement infrastructure [6, 54, 55], the
Einstein Toolkit [1, 52], and the McLachlan Einstein code [45]. We describe
this benchmark in detail in [58].

4.6.4 Carpet Performance

We examined the Carpet weak scaling benchmark described above on sev-
eral systems with different architectures. Figure 4.5 shows results for the Cray
XT4 Franklin, a Blue Gene/P, and Hyperion in terms of runtime and parallel
scalability. Overall, Carpet shows excellent weak scalability, achieving super-
linear performance on Franklin and Intrepid. On Hyperion scalability breaks
down at around 1024 processors, the source of the anomaly is under investiga-
tion, as Carpet has demonstrated high scalability up to 12288 processors on
other systems with similar architecture, including the Xeon/Infiniband Queen
Bee [7] and the AMD/Infiniband Ranger [8] clusters. We were unfortunately
not able to obtain interactive access to Hyperion for the Cactus team, and
were thus not able to examine this problem in detail — future efforts will
focus on identifying the system-specific performance constraints.

We note that we needed to modify the benchmark parameters to run on
the BG/P system, since there is not enough memory per core for the standard
settings. Instead of assigning AMR components with 253 grid points to each

20 Performance Tuning of Scientific Applications

core, we were able to use only 133 grid points per component. This reduces
the per-core computational load by a factor of about eight, but reduces the
memory consumption only by a factor of about four due to the additional
inter-processor ghost zones required. Consequently, we expect this smaller
version of the benchmark to show less performance and be less scalable.

In some cases (such as Franklin), scalability even improves for very large
number of cores. We assume that it is due to the AMR interface conditions
in our problem setup. As the number of cores increases, we increase the total
problem size to test weak scaling. Increasing the size of the domain by a
factor of N increases the number of evolved grid points by N3, but increases
the number of AMR interface points only by a factor of N2. As the problem
size increases, the importance of the AMR interface points (and the associated
computation and communication overhead) thus decreases.

4.7 CASTRO: Compressible Astrophysics

CASTRO is a finite volume evolution code for compressible flow in Eulerian
coordinates and includes self-gravity and reaction networks. CASTRO incor-
porates hierarchical block-structured adaptive mesh refinement and supports
3D Cartesian, 2D Cartesian and cylindrical, and 1D Cartesian and spherical
coordinates. It is currently used primarily in astrophysical applications, specif-
ically for problems such as the time evolution of Type Ia and core collapse
supernovae.

The hydrodynamics in CASTRO is based on the unsplit methodology in-
troduced in [26]. The code has options for the piecewise linear method in [26]
and the unsplit piecewise parabolic method (PPM) in [46]. The unsplit PPM
has the option to use the less restrictive limiters introduced in [27]. All of the
hydrodynamics options are designed to work with a general convex equation
of state.

CASTRO supports two different methods for including Newtonian self-
gravitational forces. One approach uses a monopole approximation to compute
a radial gravity consistent with the mass distribution. The second approach
is based on solving the Poisson equation,

−∆φ = 4πGρ,

for the gravitational field, φ. The Poisson equation is discretized using stan-
dard finite difference approximations and the resulting linear system is solved
using geometric multigrid techniques, specifically V-cycles and red-black
Gauss-Seidel relaxation. A third approach in which gravity is externally spec-
ified is also available.

Our approach to adaptive refinement in CASTRO uses a nested hierarchy

Large-Scale Numerical Simulations on High-End Computational Platforms 21

(a)

Number Level1 Level2
of Stars Grids Grids

512 (L0) 512 (L0)
one 1728 (L1) 512 (L1)

1728 (L2)
1024 1024

two 3456 1024
3456

2048 2048
four 6912 2048

6912
4096 4096

eight 13824 4096
13824

(b)

FIGURE 4.6: CASTRO (a) Close-up of a single star in the CASTRO test
problem, shown here in red through black on the slice planes are color contours
of density. An isosurface of the velocity magnitude is shown in brown, and the
vectors represent the radially-inward-pointing self-gravity. (b) Number of grids
for each CASTRO test problem.

of logically-rectangular grids with simultaneous refinement of the grids in both
space and time. The integration algorithm on the grid hierarchy is a recursive
procedure in which coarse grids are advanced in time, fine grids are advanced
multiple steps to reach the same time as the coarse grids, and the data at
different levels are then synchronized. During the regridding step, increas-
ingly finer grids are recursively embedded in coarse grids until the solution
is sufficiently resolved. An error estimation procedure based on user-specified
criteria evaluates where additional refinement is needed and grid generation
procedures dynamically create or remove rectangular fine grid patches as res-
olution requirements change.

For pure hydrodynamic problems, synchronization between levels requires
only a “reflux” operation in which coarse cells adjacent to the fine grid are
modified to reflect the difference between the original coarse-grid flux and the
integrated flux from the fine grid. (See [19, 20]). For processes that involve
implicit discretizations, the synchronization process is more complex. The
basic synchronization paradigm for implicit processes is discussed in [14]. In
particular, the synchronization step for the full self-gravity algorithm is similar
to the algorithm introduced by [47].

CASTRO uses a general interface to equations of state and thermonuclear

22 Performance Tuning of Scientific Applications

reaction networks, that allows us to easily add more extensive networks to
follow detailed nucleosynthesis.

The parallelization strategy for CASTRO is to distribute grids to pro-
cessors. This provides a natural coarse-grained approach to distributing the
computational work. When AMR is used a dynamic load balancing technique
is needed to adjust the load. We use both a heuristic knapsack algorithm and
a space-filling curve algorithm for load balancing. Criteria based on the ratio
of the number of grids at a level to the number of processors dynamically
switches between these strategies.

CASTRO is written in C++ and Fortran-90. The time stepping control,
memory allocation, file I/O, and dynamic regridding operations occur primar-
ily in C++. Operations on single arrays of data, as well as the entire multigrid
solver framework, exist in Fortran-90.

4.7.1 CASTRO and Carpet

The AMR algorithms employed by CASTRO and Carpet (see section 4.6.1
above) share certain features, and we outline the commonalities and differences
below.

Both CASTRO and Carpet use nested hierarchies of logically rectangular
grids, refining the grids in both space and time. The integration algorithm
on the grid hierarchy is a recursive procedure in which coarse grids are first
advanced in time, fine grids are then advanced multiple steps to reach the same
time as the coarse grids, and the data at different levels are then synchronized.
This AMR methodology was introduced by Berger and Oliger (1984) [21] for
hyperbolic problems.

Both CASTRO and Carpet support different coordinate systems; CAS-
TRO can be used with Cartesian, cylindrical, or spherical coordinates while
Carpet can handle multiple patches with arbitrary coordinate systems [53].

The basic AMR algorithms in both CASTRO and Carpet is independent
of the spatial discretization and the time integration methods which are em-
ployed. This cleanly separates the formulation of physics from the computa-
tional infrastructure which provides the mechanics of gridding and refinement.

The differences between CASTRO and Carpet are mostly historic in ori-
gin, coming from the different applications areas that they are or were target-
ing. CASTRO originates in the hydrodynamics community, whereas Carpet’s
background is in solving the Einstein equations. This leads to differences in
the supported feature set, while the underlying AMR algorithm is very simi-
lar. Quite likely both could be extended to support the feature set offered by
the respective other infrastructure.

For example, CASTRO offers a generic regridding algorithm based on user-
specified criteria (e.g. to track shocks), refluxing to match fluxes on coarse and
fine grids, vertex- and cell-centred quantities. These features are well suited to
solve flux-conservative hydrodynamics formulations. CASTRO also contains
a full Poisson solver for Newtonian gravity.

Large-Scale Numerical Simulations on High-End Computational Platforms 23

Carpet, on the other hand, supports features required by the Einstein
equations, which have a wave-type nature where conservation is not relevant.
Various formulations of the Einstein equations contain second spatial deriva-
tives, requiring a special treatment of refinement boundaries (see [56]). Also,
Carpet does not contain a Poisson solver since gravity is already described by
the Einstein equations, and no extra elliptic equation needs to be solved.

CASTRO and Carpet are also very similar in terms of their implementa-
tion. Both are parallelised using MPI, and support for multi-core architectures
via OpenMP has been or is being added.

4.7.2 CASTRO Performance

The test problem for the scaling study was that of one or more self-
gravitating stars in a 3D domain with outflow boundary conditions on all
sides. We used a stellar equation of state as implemented in [60] and initial-
ized the simulation by interpolating data from a 1D model file onto the 3D
Cartesian mesh. The model file was generated by a 1D stellar evolution code,
Kepler([61]). An initial velocity perturbation was then superimposed onto
the otherwise quiescent star — a visualization is shown in Figure 4.6(a).

The test problem was constructed to create a weak scaling study, with a
single star in the smallest runs, and two, four, and eight stars for the larger
runs, with the same grid layout duplicated for each star. Runs on Hyperion
were made with one, two, and four stars, using 400, 800, and 1600 processors
respectively. Hyperion was in the early testing stage when these runs were
made and 1600 processors was the largest available pool at the time, so the
smaller runs were set to 400 and 800 processors. Runs on Franklin were made
with one, two, four, and eight stars, using 512, 1024, 2048, and 4096 processors
respectively. The number of grids for each problem is shown in Table 4.6(b).

Figure 4.7 shows the performance and scaling behavior of CASTRO on
Franklin and Hyperion. Results were not collected on Intrepid because the
current implementation of CASTRO is optimized for large grids and requires
more memory per core than is available on that machine. This will be the
subject of future investigation. The runs labeled with “no gravity” do not
include a gravity solver, and we note that these scale very well from 512
to 4096 processors. Here Level1 refers to a simulation with a base level and
one level of refinement, and Level2 refers to a base level and two levels of
refinement. Refinement here is by a factor of two between each level. For the
Level2 calculations, the Level0 base grid size was set to half of the Level1
calculation’s Level0 base size in each direction to maintian the same effective
calculation resolution. Maximum grid size was 64 cells in each direction.

Observe that the runs with “gravity” use the Poisson solver and show less
ideal scaling behavior; this is due to the increasing cost of communication in
the multigrid solver for solving the Poisson equation. However, the Level1 and
Level2 calculations show similar scaling, despite that fact that theLevel2 cal-
culation has to do more communication than the Level1 calculation in order

24 Performance Tuning of Scientific Applications

0

50

100

150

200

250

300

350

512 1024 2048 4096

Ru
n.

m
e
(s
ec
on

ds
)

Processors

CASTRO: Franklin

L1 No Gravity L1 Gravity L2 Gravity

(a)

0

50

100

150

200

250

300

350

400 800 1600

Ru
n-

m
e
(s
ec
on

ds
)

Processors

CASTRO: Hyperion
L1 No Gravity L1 Gravity L2 Gravity

(b)

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000

Sc
al
ab

ili
ty

Processors

CASTRO Scaling

Linear
Franklin‐L2
Hyperion‐L2
Franklin‐L1‐NoGrav
Hyperion‐L1‐NoGrav

(c)

FIGURE 4.7: CASTRO performance behavior with and without the gravity
solver using one (L1) and two (L2) levels of adaptivity on (a) Franklin and
(b) Hyperion. (c) Shows scalability of the various configurations.

to syncronize the extra level and do more work to keep track of the overhead
data required by the extra level. The only exception to this is the highest con-
currency Franklin benchmark, where the Level2 calculation scales noticeably
less well than the Level1.

Comparing the two architectures, Franklin shows the same or better scaling
than Hyperion for the one, two, and four star benchmarks despite using more
processors in each case. For the Level2 calculations with “gravity,” even at the
lowest concurrency, Franklin is roughly 1.6 times faster than Hyperion, while
a performance prediction based on peak flops would be about 1.2.

In a real production calculation, the number and sizes of grids will vary
during the run as the underlying data evolves. This changes the calculation’s
overall memory requirements, communication patterns, and sizes of commu-
nicated data, and will therefore effect the overall performance of the entire
application Future work will include investigations on optimal gridding, ef-
fective utilization of shared memory multicore nodes, communication locality,

Large-Scale Numerical Simulations on High-End Computational Platforms 25

reduction of AMR metadata overhead requirements, and the introduction of
a hybrid MPI/OpenMP calculation model.

4.8 MILC: Quantum Chromodynamics

The MIMD Lattice Computation (MILC) collaboration has developed a
set of codes written in the C language that are used to study quantum chromo-
dynamics (QCD), the theory of the strong interactions of subatomic physics.
“Strong interactions” are responsible for binding quarks into protons and neu-
trons and holding them all together in the atomic nucleus. These codes are
designed for use on MIMD (multiple instruction multiple data) parallel plat-
forms, using the MPI library. A particular version of the MILC suite, enabling
simulations with conventional dynamical Kogut-Susskind quarks is studied in
this paper. The MILC code has been optimized to achieve high efficiency on
cache-based superscalar processors. Both ANSI standard C and assembler-
based codes for several architectures are provided in the source distribution.2

In QCD simulations, space and time are discretized on sites and links
of a regular hypercube lattice in four-dimensional space time. Each link be-
tween nearest neighbors in this lattice is associated with a 3-dimensional SU(3)
complex matrix for a given field [38]. The simulations involve integrating an
equation of motion for hundreds or thousands of time steps that requires in-
verting a large, sparse matrix at each step of the integration. The sparse matrix
problem is solved using a conjugate gradient (CG) method, but because the
linear system is nearly singular many CG iterations are required for conver-
gence. Within a processor the four-dimensional nature of the problem requires
gathers from widely separated locations in memory. The matrix in the linear
system being solved contains sets of complex 3-dimensional “link” matrices,
one per 4-D lattice link but only links between odd sites and even sites are
non-zero. The inversion by CG requires repeated three-dimensional complex
matrix-vector multiplications, which reduces to a dot product of three pairs
of three-dimensional complex vectors. The code separates the real and imag-
inary parts, producing six dot product pairs of six-dimensional real vectors.
Each such dot product consists of five multiply-add operations and one mul-
tiply [22]. The primary parallel programing model for MILC is a 4-D domain
decomposition with each MPI process assigned an equal number of sublattices
of contiguous sites. In a four-dimensional problem each site has eight nearest
neighbors.

Because the MILC benchmarks are intended to illustrate performance
achieved during the “steady-state” portion of an extremely long Lattice Gauge

2See http://www.physics.utah.edu/~detar/milc.html for a further description of
MILC.

26 Performance Tuning of Scientific Applications

0

1

2

3

4

5

6

7

128 512 2K 8K 32K

Ru
n/

m
e
(s
ec
on

ds
)

Processors

MILC ‐ SMALL Hyperion

Franklin

BG/P

(a)

0

100

200

300

400

500

600

700

800

900

128 512 2K 8K 32K

Ru
n0

m
e
(s
ec
on

ds
)

Processors

MILC ‐ LARGE Hyperion
Franklin
BG/P

(b)

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000

Sc
al
ab

ili
ty

Processors

MILC‐SMALL Scaling

Linear Hyperion Franklin BG/P

(c)

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000

Sc
al
ab

ili
ty

Processors

MILC‐LARGE Scaling

Linear Hyperion Franklin BG/P

(d)

FIGURE 4.8: MILC performance and scalability using (a–b) small and (c–d)
large problem configurations.

simulation, each benchmark actually consists of two runs: a short run with a
few steps, a large step size, and a loose convergence criterion to let the lat-
tice evolve from a totally ordered state, and a longer run starting with this
“primed” lattice, with increased accuracy for the CG solve and a CG iteration
count that is a more representative of real runs. Only the time for the latter
portion is used.

4.8.1 MILC Performance

We conduct two weak-scaling experiments: a small lattice per core and
a larger lattice per core, representing two extremes of how MILC might be
used in a production configuration. Benchmark timing results and scalability
characteristics are shown in Figures 4.8(a–b) and Figures 4.8(c–d) for small
and large problems, respectively. Not surprisingly, scalability is generally bet-
ter for the larger lattice than for the smaller. This is particularly true for the
Franklin XT4 system, for which scalability of the smaller problem is severely

Large-Scale Numerical Simulations on High-End Computational Platforms 27

limited. Although the overall computation/communication is very low, one
of the main sources of performance degradation is the CG solve. MILC was
instrumented to measure the time in five major parts of the code, and on 1024
cores the CG portion is consuming about two-thirds of the runtime. Micro-
kernel benchmarking of the MPI Allreduce operation on three systems (not
shown) shows that the XT4’s SeaStar interconnect is considerably slower on
this operation at larger core counts. Note, however, that these microkernel
data were obtained on a largely dedicated Hyperion system and a dedicated
partition of BG/P but in a multi-user environment on the XT4, for which job
scheduling is basically random within the interconnect’s torus; therefore, the
XT4 data likely include the effects of interconnect contention. For the smaller
MILC lattice scalability suffers due to the insufficient computation, required
to hide this increased Allreduce cost on the XT4.

In contrast, scalability doesn’t differ very much between the two lattice
sizes on the BG/P system, and indeed, scalability of the BG/P system is
generally best of all the systems considered here. Furthermore, it is known that
carefully mapping the 4-D MILC decomposition to the BG/P torus network
can sometimes improve performance; however, this was not done in these
studies and will be the subject of future investigations.

The Hyperion cluster shows similar scaling characteristics to Franklin for
the large case, and somewhat better scaling than Franklin for the small.

Turning our attention to absolute performance, for the large case we see
that Franklin significantly outperforms the other platforms, with the BG/P
system providing the second best performance. For the small case, the or-
der is essentially reversed, with Hyperion having the best performance across
the concurrencies studied. MILC is a memory bandwidth-intensive applica-
tion. Nominally, the component vector and corresponding matrix operations
consume 1.45 bytes input/flop and 0.36 bytes output/flop; in practice, we
measure for the entire code a computational intensity of about 1.3 and 1.5,
respectively, for the two lattice sizes on the Cray XT4. On multicore sys-
tems this memory bandwidth dependence leads to significant contention ef-
fects within the socket. The large case shows this effect most strongly, with
the Intel Harpertown-based Hyperion system lagging behind the other two
architectures despite having a higher peak floating-point performance.

4.9 Summary and Conclusions

Computational science is at the dawn of petascale computing capability,
with the potential to achieve simulation scale and numerical fidelity at hitherto
unattainable levels. However, increasing concerns over power efficiency and the
economies of designing and building these large systems are accelerating recent
trends towards architectural diversity through new interest in customization

28 Performance Tuning of Scientific Applications

0

0.2

0.4

0.6

0.8

1

GTC Olympus MILC CASTRO CARPET

Re
la
=
ve
 R
un

=
m
e

SUMMARY BG/P Franklin Hyperion

FIGURE 4.9: Results summary for the largest comparable concurrencies of
the five evaluated codes on three leading HPC platforms, showing relative
runtime performance normalized to fastest system. Note that due to BG/P’s
restricted memory capacity: Olympus uses 4x the number of BG/P cores,
Carpet uses reduced BG/P problem domains, and CASTRO was unable to
conduct comparable BG/P experiments.

and tighter system integration on the one hand and incorporating commodity
components on the other. Understanding the tradeoffs of these differing design
paradigms, in the context of high-end numerical simulations, is a key step
towards making effective petascale computing a reality.

In this study, we examined the behavior of a number of key large-scale
scientific computations. To maximize the utility for the HPC community, per-
formance was evaluated on the full applications, with real input data and at
the scale desired by application scientists in the corresponding domain; these
types of investigations require the participation of computational scientists
from highly disparate backgrounds. Performance results and analysis were
presented on three leading HPC platforms: Franklin XT4, Hyperion Xeon
cluster, and Intrepid BG/P, representing some of the most common design
trade-offs in the high performance computing arena.

Figure 4.9 presents a summary of the results for largest comparable con-
currencies of the five evaluated codes, showing relative runtime performance
normalized to fastest system. Observe that the tightly integrated Cray XT sys-
tem achieves the highest performance, consistently outperforming the Xeon
cluster — assembled from commodity components. Comparing to the BG/P is
more difficult, as two of the benchmarks use different numbers of processors or
different weak scaling parameters. For GTC and MILC, the two directly com-
parable benchmarks — in one case the Xeon platform outperforms the BG/P
platform, but in the other the situation is reversed. For MILC, the low mem-
ory bandwidth of the Xeon Clovertown and the relatively poor performance
of collective communication of IB as compared to the custom interconnect
of BG/P means that BG/P comes out ahead. For the higher computational
intensity GTC, the Intel/IB cluster dominates. In the case of Olympus, we
can compare across architectures based on the idea that the differences in

Large-Scale Numerical Simulations on High-End Computational Platforms 29

number of processors used is representative of how a simulation would be run
in practice. Here BG/P and the Xeon cluster have comparable performance,
with the XT ahead. For Carpet, the smaller domain sizes used for the BG/P
runs makes accurate comparison impossible, but one can certainly say that
absolute performance is very poor compared with both the XT and Xeon
cluster.

However, as the comparison in Figure 4.9 is at relatively small concurren-
cies due to the size of the Intel/IB cluster, this is only part of the picture.
At higher concurrencies the scalability of BG/P exceeds that of the XT for
GTC and MILC, and substantially similar scaling is seen for Olympus. How-
ever, for Carpet, XT scalability is better than on BG/P, although it should be
noted that both scale superlinearly. While both BG/P and XT have custom
interconnects, BG/P isolates portions of the interconnect (called partitions)
for particular jobs much more effectively than on the XT, where nodes in
a job can be scattered across the torus intermixed with other jobs that are
competing for link bandwidth. This is one of the likely reasons for the poorer
scalability of some applications on the XT.

Overall, these extensive performance evaluations are an important step
toward effectively conducting simulations at the petascale level and beyond,
by providing computational scientists and system designers with critical in-
formation on how well numerical methods perform across state-of-the-art par-
allel systems. Future work will explore a wider set of computational methods,
with a focus on irregular and unstructured algorithms, while investigating a
broader set of HEC platforms, including the latest generation of multi-core
technologies.

4.10 Acknowledgements

We thank Bob Walkup and Jun Doi of IBM for the optimized version
of MILC for the BG/P system and Steven Gottlieb of Indiana University for
many helpful discussions related to MILC benchmarking. We also kindly thank
Brent Gorda of LLNL for access to the Hyperion system. This work was sup-
ported by the Advanced Scientific Computing Research Office in the DOE Of-
fice of Science under contract number DE-AC02-05CH11231. The GTC work
was supportred by the DOE Office of Fusions Energy Science under contract
number DE-AC02-09CH11466. This work was also supported by the NSF
awards 0701566 XiRel and 0721915 Alpaca, by the LONI numrel allocation,
and by the NSF TeraGrid allocations TG-MCA02N014 and TG-ASC090007.
This research used resources of NERSC at LBNL and ALCF at ANL which
are supported by the Office of Science of the DOE under Contract No. DE-
AC02-05CH11231 and DE-AC02-06CH11357 respectively.

30 Performance Tuning of Scientific Applications

Bibliography

[1] CactusEinstein toolkit home page. URL http://www.cactuscode.org/Community/

NumericalRelativity/.

[2] GEO 600. URL http://www.geo600.uni-hannover.de/.

[3] Kranc: Automated code generation. URL http://numrel.aei.mpg.de/Research/

Kranc/.

[4] LIGO: Laser Interferometer Gravitational wave Observatory. URL http://www.ligo.

caltech.edu/.

[5] LISA: Laser Interferometer Space Antenna. URL http://lisa.nasa.gov/.

[6] Mesh refinement with Carpet. URL http://www.carpetcode.org/.

[7] Queen Bee, the core supercomputer of LONI. URL http://www.loni.org/systems/

system.php?system=QueenBee.

[8] Sun Constellation Linux Cluster: Ranger. URL http://www.tacc.utexas.edu/

resources/hpc/.

[9] M. F. Adams. A distributed memory unstructured Gauss–Seidel algorithm for multi-
grid smoothers. In ACM/IEEE Proceedings of SC2001: High Performance Networking
and Computing, Denver, Colorado, November 2001.

[10] M. F. Adams, H.H. Bayraktar, T.M. Keaveny, and P. Papadopoulos. Ultrascalable
implicit finite element analyses in solid mechanics with over a half a billion degrees of
freedom. In ACM/IEEE Proceedings of SC2004: High Performance Networking and
Computing, 2004.

[11] M. F. Adams, M. Brezina, J.J Hu, and R. S. Tuminaro. Parallel multigrid smoothing:
polynomial versus Gauss–Seidel. J. Comp. Phys., 188(2):593–610, 2003.

[12] Miguel Alcubierre, Bernd Brügmann, Peter Diener, Michael Koppitz, Denis Pollney,
Edward Seidel, and Ryoji Takahashi. Gauge conditions for long-term numerical black
hole evolutions without excision. Phys. Rev. D, 67:084023, 2003.

[13] Miguel Alcubierre, Bernd Brügmann, Thomas Dramlitsch, José A. Font, Philippos
Papadopoulos, Edward Seidel, Nikolaos Stergioulas, and Ryoji Takahashi. Towards a
stable numerical evolution of strongly gravitating systems in general relativity: The
conformal treatments. Phys. Rev. D, 62:044034, 2000.

[14] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome. A conserva-
tive adaptive projection method for the variable density incompressible Navier-Stokes
equations. Journal of Computational Physics, 142:1–46, 1998.

[15] Alpaca: Cactus tools for application-level profiling and correctness analysis. URL
http://www.cct.lsu.edu/~eschnett/Alpaca/.

[16] Astrophysics Simulation Collaboratory (ASC) home page. URL http://www.

ascportal.org.

[17] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.0.0, Argonne National Labo-
ratory, 2008.

31

32 Performance Tuning of Scientific Applications

[18] H. H. Bayraktar, M.F. Adams, P.F. Hoffmann, D.C. Lee, A. Gupta, P. Papadopoulos,
and T.M. Keaveny. Micromechanics of the human vertebral body. In Transactions of
the Orthopaedic Research Society, volume 29, page 1129, San Francisco, 2004.

[19] J. Bell, M. Berger, J. Saltzman, and M. Welcome. A three-dimensional adaptive mesh
refinement for hyperbolic conservation laws. SIAM J. Sci. Statist. Comput., 15(1):127–
138, 1994.

[20] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of Computational Physics, 82(1):64–84, May 1989.

[21] Marsha J. Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. J. Comput. Phys., 53:484–512, 1984.

[22] C. Bernard, C. DeTar, S. Gottlieb, U.M. Heller, J. Hetrick, N. Ishizuka, L. Kärkkäinen,
S.R. Lantz, K. Rummukainen, R. Sugar, D. Toussaint, and M. Wingate. Lattice QCD
on the IBM scalable POWERParallel systems SP2. In ACM/IEEE Proceedings of SC
1995: High Performance Networking and Computing, San Diego, California, November
1995.

[23] David Brown, Peter Diener, Olivier Sarbach, Erik Schnetter, and Manuel Tiglio. Tur-
duckening black holes: an analytical and computational study. Phys. Rev. D (submit-
ted), 2008. URL http://arxiv.org/abs/0809.3533.

[24] Cactus Computational Toolkit home page, URL http://www.cactuscode.org/.

[25] Karen Camarda, Yuan He, and Kenneth A. Bishop. A parallel chemical reactor simu-
lation using Cactus. In Proceedings of Linux Clusters: The HPC Revolution, NCSA,
2001. URL http://www.cactuscode.org/Articles/Camarda01.doc.

[26] P. Colella. Multidimensional Upwind Methods for Hyperbolic Conservation Laws.
Journal of Computational Physics, 87:171–200, 1990.

[27] P. Colella and M. D. Sekora. A limiter for PPM that preserves accuracy at smooth
extrema. Journal of Computational Physics, submitted.

[28] Peter Diener, Ernst Nils Dorband, Erik Schnetter, and Manuel Tiglio. Optimized
high-order derivative and dissipation operators satisfying summation by parts, and
applications in three-dimensional multi-block evolutions. J. Sci. Comput., 32:109–145,
2007.

[29] Fokke Dijkstra and Aad van der Steen. Integration of Two Ocean Models. In Special
Issue of Concurrency and Computation, Practice & Experience, volume 18, pages 193–
202. Wiley, 2005.

[30] FEAP. URL http://www.ce.berkeley.edu/projects/feap/.

[31] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf. The
Cactus framework and toolkit: Design and applications. In Vector and Parallel Pro-
cessing – VECPAR’2002, 5th International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[32] Sascha Husa, Ian Hinder, and Christiane Lechner. Kranc: a Mathematica application
to generate numerical codes for tensorial evolution equations. Comput. Phys. Comm.,
174:983–1004, 2006.

[33] ITER: International thermonuclear experimental reactor. URL http://www.iter.org/.

[34] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregu-
lar graphs. ACM/IEEE Proceedings of SC1996: High Performance Networking and
Computing, 1996.

[35] Jong G. Kim and Hyoung W. Park. Advanced simulation technique for modeling
multiphase fluid flow in porous media. In Computational Science and Its Applications
- Iccsa 2004, LNCS 2004, by A. Lagana et. al., pages 1–9, 2004.

Large-Scale Numerical Simulations on High-End Computational Platforms 33

[36] Soon-Heum Ko, Kum Won Cho, Young Duk Song, Young Gyun Kim, Jeong su Na,
and Chongam Kim. Lecture Notes in Computer Science: Advances in Grid Computing
- EGC 2005: European Grid Conference, Amsterdam, The Netherlands, February 14-
16, 2005, Revised Selected Papers, chapter Development of Cactus Driver for CFD
Analyses in the Grid Computing Environment, pages 771–777. Springer, 2005.

[37] Kranc: Automated code generation. URL http://www.cct.lsu.edu/~eschnett/

Kranc/.

[38] A.S. Kronfeld. Quantum chromodynamics with advanced computing. J. Phys.: Conf.
Ser., 125:012067, 2008.

[39] Christiane Lechner, Dana Alic, and Sascha Husa. From tensor equations to numerical
code — computer algebra tools for numerical relativity. In SYNASC 2004 — 6th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, 2004. URL http://arxiv.org/abs/cs.SC/0411063.

[40] W. W. Lee. Gyrokinetic particle simulation model. J. Comp. Phys., 72:243–269, 1987.

[41] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of turbulent transport in
magnetically confined plasmas. Phys. Rev. Lett., 88, 2002.

[42] Z. Lin, T. S. Hahm, W. W. Lee, et al. Turbulent transport reduction by zonal flows:
Massively parallel simulations. Science, 281:1835–1837, 1998.

[43] X.S. Liu, X.H. Zhang, K.K. Sekhon, M.F. Adam, D.J. McMahon, E. Shane, J.P.
Bilezikian, and X.E. Guo. High-resolution peripheral quantitative computed tomogra-
phy can assess microstructural and mechanical properties of human distal tibial bone.
Journal of Bone and Mineral Research, in press.

[44] Seth Major, David Rideout, and Sumati Surya. Spatial hypersurfaces in causal set
cosmology. Classical Quantum Gravity, 23:4743–4752, Jun 2006.

[45] McLachlan, a public BSSN code. URL http://www.cct.lsu.edu/~eschnett/

McLachlan/.

[46] G. H. Miller and P. Colella. A Conservative Three-Dimensional Eulerian Method for
Coupled Solid-Fluid Shock Capturing. Journal of Computational Physics, 183:26–82,
2002.

[47] F. Miniati and P. Colella. Block structured adaptive mesh and time refinement for
hybrid, hyperbolic + n-body systems. Journal of Computational Physics, 227:400–
430, 2007.

[48] L. Oliker, A. Canning, J. Carter, et al. Scientific Application Performance on Candidate
PetaScale Platforms. In IPDPS:International Conference on Parallel and Distributed
Computing Systems, Long Beach, CA, 2007.

[49] L. Oliker, A. Canning, J. Carter, and J. Shalf. Scientific computations on modern
parallel vector systems. In Proc. SC2004, Pittsburgh, PA, 2004.

[50] PETSc: Portable, extensible toolkit for scientific computation. URL http://www.mcs.

anl.gov/petsc/.

[51] D. Rideout and S. Zohren. Evidence for an entropy bound from fundamentally discrete
gravity. Classical Quantum Gravity, 2006.

[52] Erik Schnetter. Multi-physics coupling of Einstein and hydrodynamics evolution: A
case study of the Einstein Toolkit. CBHPC 2008 (Component-Based High Performance
Computing) (accepted), 2008.

[53] Erik Schnetter, Peter Diener, Ernst Nils Dorband, and Manuel Tiglio. A multi-block
infrastructure for three-dimensional time-dependent numerical relativity. Classical
Quantum Gravity, 23:S553–S578, 2006. URL http://arxiv.org/abs/gr-qc/0602104.

[54] Erik Schnetter, Peter Diener, Nils Dorband, and Manuel Tiglio. A multi-block infras-
tructure for three-dimensional time-dependent numerical relativity. Classical Quantum
Gravity, 23:S553–S578, 2006. URL http://stacks.iop.org/CQG/23/S553.

34 Performance Tuning of Scientific Applications

[55] Erik Schnetter, Scott H. Hawley, and Ian Hawke. Evolutions in 3D numerical relativity
using fixed mesh refinement. Classical Quantum Gravity, 21(6):1465–1488, 21 March
2004.

[56] Erik Schnetter, Scott H. Hawley, and Ian Hawke. Evolutions in 3d numerical relativity
using fixed mesh refinement. Classical Quantum Gravity, 21:1465–1488, 2004. URL
http://arxiv.org/abs/gr-qc/0310042.

[57] B. Talbot, S. Zhou, and G. Higgins. Review of the Cactus framework: Software en-
gineering support of the third round of scientific grand challenge investigations, task
4 report - earth system modeling framework survey. URL http://ntrs.nasa.gov/

archive/nasa/casi.ntrs.nasa.gov/20020069014_2002111115.pdf.

[58] Jian Tao, Gabrielle Allen, Ian Hinder, Erik Schnetter, and Yosef Zlochower. XiRel:
Standard benchmarks for numerical relativity codes using Cactus and Carpet. Techni-
cal Report CCT-TR-2008-5, Louisiana State University, 2008. URL http://www.cct.

lsu.edu/CCT-TR/CCT-TR-2008-5.

[59] K. S. Thorne. Gravitational Radiation – a New Window Onto the Universe. (Karl
Schwarzschild Lecture 1996). Reviews of Modern Astronomy, 10:1–28, 1997.

[60] Frank X. Timmes and F. Douglas Swesty. The accuracy, consistency, and speed of an
electron-positron equation of state based on table interpolation of the helmholtz free
energy. ”Astrophysical Journal, Supplement”, 126:501–516, 2000.

[61] T. A. Weaver, G. B. Zimmerman, and S. E. Woosley. Presupernova evolution of massive
stars. Astrophysical Journal, 225:1021–1029, 1978.

[62] Burkhard Zink, Erik Schnetter, and Manuel Tiglio. Multipatch methods in general
relativistic astrophysics – hydrodynamical flows on fixed backgrounds. Phys. Rev. D,
77:103015, 2008.

